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Abstract

Quantum mechanics enables some computational problems to be solved by
quantum algorithms faster than any known classical algorithm. Is there a
link between this and the other features of quantum mechanics that set it
apart from classical theories?

A dramatic example of such a feature is quantum non-locality. This re-
port begins by reviewing the stabilizer formalism, an efficient way of doing
some quantum mechanical calculations. The formalism is then applied in
Chapter 2 to review quantum non-locality. A brief review of quantum com-
putation follows in Chapter 3, which compares the circuit and measurement-
based approaches and provides a simple argument for a link with quantum
non-locality.

The novel content in this report begins in Chapter 4 where Spekkens’
example of a theory that shares some features with quantum mechanics is
reviewed and a stabilizer-like notation for it is introduced. The theory is
local by construction and so does not exhibit anything similar to quantum
non-locality. With this in mind, the limited computational power of the
theory is noted.

Finally Chapter 5 defines a non-standard notion of locality for quantum
circuits, and shows that circuits that can be described within the stabilizer
formalism fit this definition. It is known that this type of quantum circuit is
not useful for quantum computation because it can be efficiently simulated
on a simple classical computer. Therefore this chapter provides further
support for a link between quantum computation and non-locality.

Chapter 6 presents a summary and some plans for extending this work.
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1 Stabilizer formalism for qubits

I begin by reviewing the stabilizer formalism for qubits (two-level quantum
systems). This formalism was introduced by Gottesman [17] to analyse
certain quantum error-correcting codes, but as a compact and efficient way
of analysing an interesting collection of quantum operations it has many
applications beyond that.

The purpose of this review is to define notation I will use later on, and
to establish a variant of the formalism in which certain mixed states are
included along with the usual pure states. The link with the standard
formalism of quantum mechanics (known as the Hilbert space formalism) is
made in Appendix A.1. However, it is helpful for what follows to put that to
one side and view the stabilizer formalism simply as a self-contained theory
of certain quantum preparations, transformations and measurements.

For another introduction to the formalism see [28, Section 10.5.1]. For a
thorough development of the mathematics see [9] and [12].

1.1 States

The stabilizer formalism makes extensive use of the “Pauli group”. For our
purposes a group is simply a non-empty set of d× d matrices satisfying

• Closure under multiplication — if A and B are in the group, then so
is their product AB;

• Inverses — if A is in the group, then its inverse A−1 exists and is in
the group.

Note that since the group is non-empty it contains some matrix A, and so
it contains A−1, and so it contains A−1A which is the d×d identity matrix.

The elements of the Pauli group on n qubits, denoted Pn, are the 2n× 2n

matrices of the form
αp1 ⊗ · · · ⊗ pn (1.1)
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where ⊗ indicates the tensor product [28, Section 2.1.7], α is a “phase
factor” 1, −1, i, or −i, and the pk are chosen from

I =

1 0

0 1

 , X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 . (1.2)

Therefore the Pauli group for a single qubit, P1, consists of the 16 matrices
I, −I, iI, −iI, X, −X, iX, −iX, Y , −Y , iY , −iY , Z, −Z, iZ and −iZ.

It is easy to check that

• If an element of the Pauli group g is written in the form (1.1) then
g2 = α2I⊗n (I⊗n means the tensor product of I with itself n times,
which is the 2n× 2n identity matrix); and

• If g and h are in Pn, then either gh = hg (in which case we say g and
h commute) or gh = −hg (in which case we say they anticommute).

Any element of a group can be written as some product of what are known
as the group’s generators. A useful set of generators for Pn is iI⊗n along with
X1, X2, . . . , Xn and Z1, Z2, . . . , Zn. The shorthand Xk denotes X acting on
the k-th qubit with the identity I acting on the rest, i.e. I⊗k−1⊗X⊗I⊗n−k.
Similarly Yk denotes Y on the k-th qubit, and Zk denotes Z on the k-th
qubit. We say a list of generators is independent if none of the generators
can be written as a product of the rest. The list of generators for Pn given
above is independent.

A subgroup is a subset of the elements of a group that itself forms a
group. Let S be a subgroup of Pn that does not contain −I⊗n. None of
the elements with imaginary phase factors α = i or α = −i are in S, since
they square to −I⊗n. Therefore all the elements are Hermitian matrices,
which correspond to quantum mechanical observables [28, Section 2.2.5].
Since they square to the identity their eigenvalues are all 1 or −1. In fact
they are commuting observables, since if two elements anti-commute (which
is the only other option in Pn) it is easy to check that their product has
an imaginary phase factor. We define the quantum state of n qubits ρS
by requiring the expectation values of these observables to be 1, whilst the
expectation values of the other Pauli observables (i.e. the Hermitian g in
Pn with neither g nor −g in S) are required to be zero. Put another way, we
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are certain that we will get the +1 outcome for some Pauli measurements
S and have no knowledge about the rest.

The subgroup S is often specified by writing a set of independent genera-
tors in angle brackets, for example the two-qubit “singlet state” is given by
S = 〈−X1X2,−Z1Z2〉 = {I⊗2,−X1X2,−Y1Y2,−Z1Z2}. Since the elements
of S commute and square to the identity, it is easy to check that if S has l
independent generators then it has exactly 2l elements.

1.1.1 Check vectors

Let g = αp1⊗· · ·⊗pk be an element of Pn. Then we define a “check vector”
for g as r(g) = (x1, . . . , xn, z1, . . . , zn) where

• If pk = I then xk = 0, zk = 0;

• If pk = X then xk = 1, zk = 0;

• If pk = Y then xk = 1, zk = 1; and

• If pk = Z then xk = 0, zk = 1.

Note that the check vector completely specifies g except that it gives no
information about the phase factor α.

Up to some phase factor we have pk = XxkZzk . Since X and Z square
to identity and commute up to some phase factor we see that if that if
g and h are elements of Pn then r(gh) = r(g) ⊕ r(h) where ⊕ denotes
component-by-component addition modulo 2. For example XY = iZ and
r(X)⊕ r(Y ) = (1, 0)⊕ (1, 1) = (1⊕ 1, 0⊕ 1) = (0, 1) = r(iZ). This means
that if some elements of Pn are independent, then their check vectors must
be linearly independent.

Check vectors are a useful way of checking if two elements of the Pauli
group commute. Let g = αp1 ⊗ · · · ⊗ pn and h = α′q′1 ⊗ · · · ⊗ q′n be two
elements of Pn. For each k, pk commutes or anticommutes with p′k. Let a
be the number of k for which pk and p′k anticommute. Then gh = (−1)ahg
since each anticommuting pair gives a minus sign. This shows that g and h
commute for a even and anticommute for a odd.

Consider the check vectors r(g) = (x1, . . . , xn, z1, . . . , zn) and r(h) =
(x′1, . . . , x

′
n, z
′
1, . . . , z

′
n). By checking every combination we see that pk and
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p′k anticommute if and only if xkz′k⊕zkx′k = 1. Therefore the condition that
a is even gives that

x1z
′
1 ⊕ z1x′1 ⊕ x2z

′
2 ⊕ z2x′2 ⊕ · · · ⊕ xnz′n ⊕ znx′n = 0 (1.3)

if and only if g and h commute. This can also be written r(g)TJnr(h) = 0
where addition modulo 2 is implied and Jn is a 2n× 2n matrix that can be
written in terms of the n× n identity matrix In as

Jn =

 0 In

In 0

 . (1.4)

1.1.2 Pure states

Suppose we have a subgroup S of Pn containing 2n elements but not −I⊗n.
Suppose we try to add another element h. We cannot add αg for any
phase factor α 6= 1 and element g of S because that would mean αgg =
αI⊗n would have to be added as well. Therefore the new element h must
have a check vector r(h) different to all those of the current elements of S.
Furthermore h must commute with the existing elements of S, in particular
it must commute with some set of n independent generators of S. This
means r(h) must satisfy be the linear equations defined by (1.3) for each of
these independent generators. Since the check vectors of these generators
are linearly independent the linear equations are independent and so the
solutions are a subspace of dimension 2n − n = n, which has 2n elements.
But these must be exactly the existing check vectors of S. Therefore we
cannot add a new element h.

In conclusion, n-qubit stabilizer states with a subgroup S of size 2n are
states of maximal knowledge (in that we cannot be certain about any more
measurement outcomes), which we will refer to as “pure states”.

1.2 Transformations

The set of reversible quantum transformations that always take stabilizer
states to stabilizer states is known as the Clifford group. Within the stabi-
lizer formalism such a transformation is represented by a reversible function
f from the Pauli group Pn to itself. To update a stabilizer subgroup S we
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just apply f to each element. If we specify S by a list of generators than
we can simply apply f to each generator.

The linearity of quantum mechanics means that f will be

• Homogeneous — for any g in the Pauli group and any phase factor α,
f(αg) = αf(g); and

• A group homomorphism — for any g and h in Pn, f(gh) = f(g)f(h).
This implies that f(I⊗n) = I⊗n.

Therefore to specify f we need only specify its action on X1, . . . , Xn and
Z1, . . . , Zn, as any element of Pn can be written as a product of some of
those (possibly with a phase factor) and we can use the properties above to
determine the action of f . For example the single-qubit Hadamard trans-
formation, which I will denote fH , is completely specified by stating that
fH(X) = Z and fH(Z) = X. We can then calculate that

fH(Y ) = fH(iXZ) = ifH(XZ) = ifH(X)fH(Z) = iZX = −Y. (1.5)

Another single-qubit transformation is the “phase” transformation fS de-
fined by fS(X) = Y and fS(Z) = Z. Any single-qubit transformation in
the Clifford group can be decomposed into sequence of fH and fS transfor-
mations. The controlled-NOT transformation on two qubits, with control
qubit 1 and target qubit 2, is defined by

fCNOT (X1) = X1X2, fCNOT (Z1) = Z1 (1.6)

fCNOT (X2) = X2, fCNOT (Z2) = Z1Z2. (1.7)

Any transformation in the Clifford group can be decomposed into a sequence
of fH , fS and fCNOT transformations acting on the various qubits [9].

1.3 Measurements

Measurements in the formalism are restricted to “Pauli observables”, which
is to say the Hermitian elements of the Pauli group. Their expectation
values were given in the definition of the states above. A useful shortcut is
that the expectation value of an observable is zero if it anticommutes with
at least one of the generators of S. In the special case of pure state, the
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converse is also true: if the expectation value of an observable is zero then
it anticommutes with at least one of the generators [28, Section 10.5.3].

If the expectation value of an observable O is 1 or −1 then that value is
returned by the measurement and the state is unchanged.

If the expectation value is zero then there is a set of generators for S with
at most one element that anticommutes with S (if starting with a list where
more than one does, just multiply the additional such elements by the first
such element). The measurement returns 1 or −1 with equal probability and
to find the new state O or −O respectively is added to the list of generators,
and the anti-commuting element (if present) is removed.

1.4 Effective measurements

Two types of “effective measurement” will be useful in what follows. Sup-
pose we are interested in implementing some Pauli measurement O. By
effective measurement I mean a procedure that has the same probabilities
of giving each outcome as O. The procedure may well leave the system in
a different state to the actual measurement. But if we don’t care about the
state of the system after the measurement then the effective measurement
is completely interchangeable with the actual one.

The first type is straightforward. Consider applying some Clifford group
transformation f with f(O) = O′, followed by a measurement of O′. De-
note the initial state of the system S, and the state application of f as S′.
Certainly O′ is in S′ if and only if O is in S since f is reversible. Also −O′

is in S′ if and only if −O is in S since f is homogeneous (and, as before,
reversible). Therefore the application of f followed by the measurement of
O′ is an effective measurement of O.

The second type is a bit more subtle, and is best illustrated through an
example. Suppose O = X1X2. Then an effective measurement of O can
be implemented by measuring X1 (which only requires access to the first
qubit) and X2 (only requiring the second qubit) and multiplying the results
(i.e. the numbers +1 or −1). This will work regardless of which order X1

and X2 are measured. This can be seen by checking every case. Denote
the state before the measurement as S. The cases for X1 being measured
first (just interchange the labels 1 and 2 for the cases where X2 is measured
first) are
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1. O is in S, but X1 is not,

2. O and X1 are in S,

3. −O is in S, but X1 is not,

4. −O and X1 are in S,

5. Neither O, −O nor X1 is in S; and

6. Neither O nor −O is in S, but X1 is.

Take the first case. SinceX1 is not in S, either outcome, ±1, will be returned
with equal probability and then ±X1 will be added to S. Any elements of
S that anticommute with X1 will be removed, but this certainly does not
include O. Since the subgroup is closed ±X1O = ±X2 will end up in the
subgroup. Therefore an X2 measurement will return ±1 with certainty.
Hence the product of the two outcomes is (±1)(±1) = 1 as required since
O was in S. The remaining five cases are similar.

This argument can easily be generalized to the statement that measuring
p1 on the first qubit, p2 on the second qubit etc, and multiplying the results,
is an effective measurement of O = p1 ⊗ p2 ⊗ · · · ⊗ pn.
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2 Quantum non-locality

In this chapter I make use of the stabilizer formalism to briefly review the
concept of quantum non-locality. Mermin [24, 26] has written several en-
gaging and accessible introductions to this topic. More detailed discussions
can be found in [5] and [22].

2.1 Can stabilizer-formalism description of

physical reality be considered complete?

The title of this section is based on that of the seminal paper “Can Quantum-
Mechanical Description of Physical Reality Be Considered Complete?” [16]
by Einstein, Podolsky and Rosen (EPR). Their argument was recast in
terms of qubits by Bohm [7], and the version here is based on that.

Consider two qubits (for example, the spins of two electrons) prepared
in the “singlet state”, S = {I⊗2,−X1X2,−Y1Y2,−Z1Z2} and then taken
to separate locations. The state tells us that if we measure X, Y or Z on
one qubit, we will get the opposite result for the same measurement on the
other qubit since their product will be −1 with certainty (recall the second
type of effective measurement in §1.4). But the state does not predict the
result of the first measurement. Since S has 22 elements it is a pure state,
and so no additional predictions, for example of the result X1 alone, can be
made by any valid quantum state.

EPR posit the hypothesis that “If, without in any way disturbing a sys-
tem, we can predict with certainty. . . the value of a physical quantity, then
there exists an element of physical reality corresponding to this physical
quantity”. They also assume that a measurement on the first qubit can-
not disturb the second, since they can be arbitrarily far apart. Since a
measurement on one qubit allows the prediction with certainty of the same
measurement on the other qubit, it follows that there must be an “element
of physical reality” that determines all three measurement outcomes (X, Y
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and Z) on each qubit. Since the quantum mechanical state does not and
cannot describe these elements of reality, it is not a complete description.

EPR concluded that “While we have thus shown that the [quantum state]
does not provide a complete description of the physical reality, we left open
the question of whether or not such a description exists. We believe, how-
ever, that such a theory is possible.”

2.2 The GHZ paradox

This belief was definitively shown to be in conflict with the physical pre-
dictions of quantum mechanics by Greenberger, Horne and Zeilinger [18]
(GHZ). They presented an argument that was a particularly compelling
version of what is now known as Bell’s theorem [4]. For an excellent discus-
sion see [25].

Consider three qubits prepared in the “GHZ state”

S = {I⊗3, X1X2X3, Z1Z2, Z2Z3, Z1Z3,−Y1Y2X3,−X1Y2Y3,−Y1X2Y3}
(2.1)

and taken to three separate locations. Since by carrying out X measure-
ments on the second and third qubit we can predict the outcome of an X

measurement on the first (we know their product will be 1), according to
EPR there is an element of physical reality corresponding to X1. We can
make similar arguments for X2, X3, Y1, Y2 and Y3. For some particular
instance of the GHZ state, let v(X1) be the outcome of an X1 measurement
which, according to EPR, must be pre-determined (even if the measurement
is not made). Similarly v(X2) denotes the outcome of an X2 measurement,
and so on. Note that the v(·) are just ordinary numbers equal to +1 or −1.

To agree with the quantum mechanical predictions the values must satisfy

v(X1)v(X2)v(X3) = 1, v(Y1)v(Y2)v(X3) = −1, (2.2)

v(X1)v(Y2)v(Y3) = −1, v(Y1)v(X2)v(Y3) = −1. (2.3)

Since v(X1)v(X1) = (±1)2 = 1 and so on, multiplying all four equations
together gives 1 = −1. Therefore the predictions of quantum mechanics
together with the requirement that all the measurement outcomes have
pre-existing values independent of what was measured at the distant sites
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leads to a contradiction. (That requirement was in turn derived from EPR’s
assumptions.)

Bell’s theorem uses similar arguments (in general of a more statistical
nature than the particularly direct ones for the GHZ case) to derive restric-
tions on how measurement results for distant systems should be correlated,
known as Bell inequalities. The fact that the predictions of quantum me-
chanics do not obey these inequalities is known as “quantum non-locality”.

Note that since, for example X1 is not in S, either outcome for an X1

measurement is equally likely, and this is true regardless of what measure-
ments are made on qubits 2 and 3. Hence the “non-locality” cannot be
used to send messages from one site to another. This is always the case in
quantum mechanics, and is known as the no-signalling principle.

2.3 Local Hidden Variable models

Exactly what set of assumptions are strictly necessary to derive Bell’s in-
equalities is still a subject of some debate (see [6] and [23] for a recent
example), and I do not seek to take a position on that debate here. What is
not controversial is that Bell’s inequalities must be obeyed by local hidden
variable (LHV) models.

Suppose two systems a and b are prepared in some quantum state and
then taken to distant locations where choices of measurements sa and sb

respectively are made and implemented. In an LHV model the preparation
would set some hidden variable (shared by both systems) λ according to
some probability distribution ρ(λ), and then the measurement outcomes oa
and ob would be sampled from some probability distributions pa(oa;λ, sa)
and pb(ob;λ, sb). Note that, crucially, pa cannot depend on sb and vice
versa by the assumption of locality. In such a model the joint probability
for measurement outcomes oa and ob when measurements sa and sb are
chosen would be found by integrating over the hidden variables

p(oa, ob; sa, sb) =
∫
dλρ(λ)pa(oa;λ, sa)pb(ob;λ, sb). (2.4)

Not all conceivable p(oa, ob; sa, sb) can be written in this form, and the re-
strictions on those that can are exactly the Bell inequalities for two systems.

A LHV model for three or more systems would be similar.
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3 Quantum computation

Here I briefly review two forms of quantum computation. Although different
in many respects, they are equivalent in computational power.

3.1 Quantum circuits

The quantum circuit model of computation was proposed by Deutsch [14]
in 1989. For a historical review see [15], for comprehensive coverage see [28].

Any classical computation can be viewed as a boolean circuit, which is
composed of wires and gates. A wire carries a single bit (0 or 1) of informa-
tion between gates. A gate receives some bits on its input wires, computes
a function of them and then outputs the resulting bits to its output wires.

Any classical computation can be written as a circuit involving just a
single type of gate, the Toffili gate [28, Section 3.2.5], which has three input
wires and three output wires. The function computed by this gate is shown

Input Output

000 000
001 001
010 010
011 011
100 100
101 101
110 111
111 110

Table 3.1: Truth table for the Toffili gate.
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in Table 3.1. This gate is represented in a circuit diagram as

•
•
��������

(3.1)

Note that the computation flows from left to right, and wires are indicated
by horizontal lines. Since any computation can be carried out using this
gate it is known as a “universal” gate. The Toffili gate is also reversible,
unlike the Negated-AND gate (which is also universal).

The quantum circuit model is a generalization of the boolean circuit.
Instead of carrying one bit of classical information, wires now carry a single
qubit. Gates now represent reversible quantum transformations (unitary
matrices in the Hilbert space formalism). An important difference from a
classical circuit is that in order to provide useful information to the user, the
output of the computation must be converted into classical bits by carrying
out a Z measurement on each qubit at the end. This process is represented
using a meter, as

NM



 (3.2)

The Hadamard transformation fH discussed in §1.2 is written

H (3.3)

similarly the phase transformation fS is written

S (3.4)

However the controlled-NOT transformation fCNOT has the special notation

•
�������� (3.5)

where the small black circle indicates the control qubit.
The qubit states represented in the stabilizer formalism by S = 〈Z〉 and

S = 〈−Z〉 are written as |0〉 and |1〉 respectively, and described as the “com-
putational basis”. Any classical reversible gate has an equivalent quantum
gate that acts on |0〉 and |1〉 in the same was as the classical gate acts on
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0 and 1. Therefore quantum circuits are at least as powerful as classical
circuits.

Since quantum mechanics can be simulated on a classical computer, it
is not possible for a quantum computer to solve a problem that a classical
computer cannot. However, this simulation is typically very inefficient and
so it is feasible that quantum computers may be able to solve problems faster
than classical ones. In computer science an algorithm is usually described
as efficient if the amount of resources (e.g. time) used by it is always less
than some polynomial in the size of the input [28, Section 3.2.2].

Shor [35] has devised a quantum circuit for the efficient decomposition
of an integer into its prime factors. No efficient classical algorithm for
this problem is known, and it is suspected that such an algorithm may be
impossible. This problem is of practical interest since the security of the
popular public-key cyptography scheme RSA [33] relies on the assumption
that factoring integers is difficult.

Any quantum circuit can be approximated using the quantum version of
the Toffili gate and the Hadamard gate H (defined in §1.2) [34]. These are
therefore an example of a universal set of quantum gates. Another impor-
tant example of a universal set is controlled-NOT together with arbitrary
single qubit gates [28, Section 4.5.2]. (Single qubit gates can in turn be
approximated using a finite set of gates [28, Section 4.5.3].)

The Toffili gate is not in the Clifford group (i.e. it cannot be described
in the stabilizer formalism). Indeed a circuit of only Clifford group gates is
no more powerful than a classical computer, since such a computation can
be simulated by a classical computer using the stabilizer formalism. In fact
their simulation is in a classical complexity class ⊕L, which is related to
classical circuits consisting of NOT and controlled-NOT gates only [1]. ⊕L

is assumed to be weaker than full classical computation.
Finally we note that a circuit diagram may seem to suggest qubits trav-

elling along wires, for example photons travelling along optical fibre with a
qubits encoded in their polarization states, between gates that are fixed in
place, for example optical elements. However, in other implementations the
qubits may be stationery, for example they may be encoded in the energy
levels of trapped ions, and the gates will be applied to them in place, for
example using various laser pulses. The quantum circuit model is not con-
cerned with these details, it is abstract enough that both of these physical

18



X ZZ

Z

Z

Figure 3.1: A cluster state of n = 7 × 5 qubits (each represented by a blue
dot) is depicted on the left. The dashed lines indicates which
qubits are considered neighbours. A typical stabilizer generator
is shown on the right.

implementations are equally valid.

3.2 Measurement-based computation

The measurement-based model of quantum computation considered here is
known as the one-way quantum computer or cluster state computer. It was
proposed by Raussendorf and Briegel [31] in 2001. A more detailed account
can be found in [32], and a very insightful review has been produced by
Nielsen [27].

The model uses a class of qubit stabilizer states known as cluster states.
n qubits are arranged on a 2-dimensional rectangular grid. The stabilizer
subgroup S is generated by n elements of the form Xk

∏′
k Z
′
k, one for each

qubit k. The k′ label qubit sites that neighbour k in the grid, see Figure 3.1.
The ability to perform arbitrary single-qubit adaptive measurements on a
sufficiently large cluster state allows the efficient simulation of any quantum
circuit [31]. On the other hand, the preparation and measurement of a
cluster state can be efficiently carried out as a quantum circuit. Therefore
the power of the two computational models is identical.

Note that the measurements must be adaptive, which is to say that the
choice of measurement sometimes depends on the outcomes of previous mea-
surement. A classical computer, known as the “control computer” must
operate during the computation to keep track of the outcomes and make
the appropriate measurement choices. Interestingly, this computer need not
be a full classical computer, in fact since it only needs to keep track of the
parity of various sequences of measurements a so-called “parity computer”

19



(only capable of solving ⊕L problems) will suffice [2].
It was stated above that arbitrary single qubit measurements on certain

stabilizer states permit universal quantum computation. What if measure-
ments are restricted to Pauli observables? In that case the computation can
be efficiently simulated by a classical computer using the stabilizer formal-
ism. But universal classical computation is still possible by using the GHZ
paradox to implement an AND gate [2]. To do this associate 0 with a Y

measurement and 1 with an X measurement. For any two bits a and b carry
out the a measurement on the first qubit of a GHZ state, the b measurement
on the second and the a⊕ b⊕ 1 measurement on the third. From (2.1) we
see that the product of the measurement outcomes will be 1 if and only if
a = b = 1.

This result should be compared to the one mentioned in the previous
section, that Clifford gates in the circuit model can only achieve ⊕L com-
putations. Loosely speaking, the ability to choose measurements “invokes”
the quantum non-locality and provides an improvement in computational
power. I will later show that in a well-defined sense a Clifford circuit does
not invoke non-locality.

The relationship between the computational power of measurement-based
computation and quantum non-locality has been studied in [30]. This work
makes use of the observation that any function of a single bit is linear, i.e.
for any f we can write f(x) = f(0)+(f(1)−f(0))x. In an LHV model each
site being measured can only compute some function of the information it
receives through the measurement choice. Therefore it can be shown that
a function computed using a parity computer that can choose between two
measurements at each site of some correlated resource can only be non-linear
(i.e. not computable by the parity computer alone) if the measurement
results violate a Bell inequality.

3.3 Heuristic argument for a link with non-locality

There would certainly not be a quantum computational speed-up over clas-
sical computers if quantum mechanics could be efficiently simulated by clas-
sical computers. Consider a physical theory compatible with an underlying
classical hidden variables of the type that EPR sought for quantum me-
chanics. Then it is plausible to argue computation within such a theory can
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always be efficiently simulated on a classical computer.
The simulation would begin by sampling from an appropriate distribu-

tion of hidden variable states and would then proceed to update that hidden
state according to the rules of the model. The exponential size of the quan-
tum state vector (which uses 2n complex numbers to describe n qubits)
would then be analogous to the exponential size of a classical probability
distribution (which uses 2n real numbers to specify a probability distribu-
tion over n bits) which does not pose any difficulties to the simulation of
classical probabilistic computation.

This argument is by no means watertight - for example there may be
an infinite number of hidden variable states (see [19] for a proof that this
would hold for quantum theory). That objection can perhaps be overcome
by restricting attention to computations that are fault-tolerant [28, Section
10.6] in the theory, but others may remain.

On the other hand, this argument can be made rigorous for theories that
live within in a certain operational framework, see [3, Theorem 15].
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4 Spekkens’ toy theory

A toy theory of restricted knowledge about local classical bits was intro-
duced by Spekkens in [36] in order to argue that quantum theory is also a
theory about restricted knowledge. I will refer to the definition provided in
that paper as the “old” definition. The theory bears a striking similarity to
the stabilizer formalism for qubits reviewed above. In this chapter I review
the toy theory and define a notation for it that makes these similarities self-
evident. I will refer to this as “pseudo-stabilizer” notation. This notation
rests upon a more mathematically transparent (but presumed equivalent)
definition of the theory that Spekkens has developed since the publication
of [36]. This definition will be reviewed and compared with the original
below, and can also be found in [37] (and partly in [38]). I will refer to it
as the “new” definition.

4.1 States

The toy theory makes a distinction between ontic states, which are states
of reality, and epistemic states, which are states of knowledge about that
reality.

An elementary system in the theory is always in one of four possible ontic
states. In the old definition the states are denoted {1, 2, 3, 4}. In the new
definition an ontic state is written as two bits (q, p), and so the four possible
states are written {(0, 0), (1, 0), (0, 1), (1, 1)}.

The ontic state of a composite system is simply a list of the ontic states
of the elementary systems it is built from. For example the possible ontic
states of two systems are (a, b) where a and b are each one of the four
possible ontic states for an elementary system. When the first system is
dealt with in isolation, it behaves exactly as an elementary system in the
state a, and similarly for the second system. This simple structure means
that there is nothing resembling quantum entanglement at the ontic level.
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In the new definition the ontic state space of a composite system composed
of n elementary systems, denoted Ωn, is identified with the vector space
of length 2n bit-strings, denoted (Z2)2n. Addition of two vectors in this
vector space is component-by-component addition modulo 2. Hence the
ontic state of n elementary systems is written (q1, . . . , qn, p1, . . . , pn). (In
[37] it is written (q1, p1, . . . , qn, pn) but the convention adopted here makes
comparison with stabilizer formalism slightly easier.)

The allowed epistemic states are slightly more complicated. In the old
definition they are constrained by a “knowledge balance principle”, which I
quote from [36] in full rather than attempting to paraphrase.

“If one has maximal knowledge, then for every system, at ev-
ery time, the amount of knowledge one possesses about the ontic
state of the system at that time must equal the amount of knowl-
edge one lacks.”

For an elementary system this results in the allowed epistemic states con-
sisting of pure states where one knows that the ontic state is one of two
possibilities (for example 1 ∨ 2, where ∨ means “or”), and a completely
mixed state where one knows nothing about the ontic state. A simple
characterization of the allowed epistemic states of composite systems is not
provided by the old definition.

The new definition speaks of “canonical variables”, which are elements
of the dual space to the space of ontic states Ωn, denoted Ω∗n. The dual
space is the space of functions from ontic states, Ωn, to a single bit, {0, 1}.
We denote the dual basis Q1, Q2, . . . , Qn, P1, P2, . . . , Pn. Being the dual
basis simply means if we have an ontic state m = (q1, . . . , qn, p1, . . . , pn)
then Qi(m) = qi and Pi(m) = pi. Any canonical variable F in Ω∗n may be
written F = a1Q1 + a2Q2 + · · ·+ anQn + b1Q1 + b2Q2 + · · ·+ bnPn for some
bit-string (a1, a2, . . . , an, b1, b2, . . . , bn) in (Z2)2n.

To enforce the knowledge balance principle we define a “Poisson bracket”
of two canonical variables F = a1q1 + · · · + anqn + b1p1 + · · · + bnpn and
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G = a′1Q1 + · · ·+ a′nQn + b′1P1 + · · ·+ b′nPn as

{F,G} =
(
a1 . . . an b1 . . . bn

)
Jn



a′1
...

a′n

b′1
...

b′n


, (4.1)

where addition modulo 2 is implied (so {F,G} is always 0 or 1) and we
recall from (1.4) that

Jn =

 0 In

In 0

 . (4.2)

If two canonical variables F and G satisfy {F,G} = 0 then we say F and
G are jointly-knowable, just as in quantum mechanics we say two Hermitian
observables A,B satisfying the commutation relation [A,B] = 0 are jointly-
measurable. If we know the value of two jointly-knowable variables F and
G then adding the values gives us knowledge of F + G. This never causes
an inconsistency because {F +G,F} = {F, F}+ {G,F} = 0, and so F +G

is jointly-knowable with F (and similarly with G).
Notice that for any ontic state we certainly know the value of the trivial

variable 0 (it is always the bit 0). This is analogous to knowing that a
measurement of I will always return 1 for any quantum state.

The allowed epistemic states in the new definition are then knowledge
of the exact value of some subspace of pairwise jointly-knowable variables,
and complete ignorance of (i.e. a uniform probability distribution for) the
remaining variables. For an elementary system this means we can know the
value of at most one of the non-trivial variables, which are Q, P and Q+P .

The “pseudo-stabilizer” notation combines a variable with it’s known
value. We begin by considering an elementary system. We write X to de-
note the knowledge that the ontic state m satisfies Q(m) = 0, and we write
−X to denote the knowledge Q(m) = 1. Similarly Z denotes P (m) = 0,
−Z denotes P (m) = 1, Y denotes (P +Q)(m) = 0 and finally −Y denotes
(P + Q)(m) = 1. We will also write I to denote the trivial knowledge
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that 0(m) = 0, and it will also be useful to write −I to denote the clearly
incorrect “knowledge” that 0(m) = 1.

We can turn this into a group, denoted G1, by associating1

I =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

, X =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 , (4.3)

Y =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

, Z =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 . (4.4)

Minus signs negate the matrices in the ordinary way, so for example

−X =


−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 (4.5)

We can read which of the ontic states {(0, 0), (1, 0), (0, 1), (1, 1)} are con-
sistent with the represented knowledge by the location of 1s on the diagonal.

The multiplication table for G1 is shown in Table 4.1. But what does
multiplication of two elements of G1 correspond to? It is easy to check
that if g represents knowledge that F (m) = a and h represents knowledge
that G(m) = b, then gh represents knowledge that (F + G)(m) = a ⊕ b.
Notice that this knowledge can be “derived” from the knowledge g and h,
so multiplication represents the deriving of new knowledge from existing
knowledge. If we attempt to combine the knowledge X and −X then we
get −XX = −I (knowledge that 0(m) = 1) showing that these two pieces
of knowledge are inconsistent.

For composite systems we use the group Gn. The elements of Gn are

1This representation of the group was devised by Terry Rudolph.
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I X Y Z -I -X -Y -Z
I I X Y Z -I -X -Y -Z
X X I Z Y -X -I -Z -Y
Y Y Z I X -Y -Z -I -X
Z Z Y X I -Z -Y -X -I
-I -I -X -Y Z I X Y Z
-X -X -I -Z Y X I Z Y
-Y -Y -Z -I X Y Z I X
-Z -Z -Y -X I Z Y X I

Table 4.1: Multiplication table for G1.

4n × 4n diagonal matrices of the form

± g1 ⊗ g2 ⊗ · · · ⊗ gn (4.6)

where the gk are chosen from {I,X ,Y,Z}. The group is generated by −I⊗n,
X1, . . . ,Xk and Z1, . . . ,Zk. The shorthand Xk means I⊗k−1 ⊗ X ⊗ I⊗n−k,
i.e. knowledge that Qk(m) = 0. Similarly Zk means I⊗k−1 ⊗Z ⊗ I⊗n−k.

Recall that multiplication of two elements gives another piece of knowl-
edge that can be derived from them. Therefore if we have the knowledge
represented by some list of elements of Gn, then we have the knowledge of
the entire subgroup generated by those elements. Therefore we can asso-
ciate epistemic states with subgroups of Gn. Which subgroups represent
allowed knowledge?

Certainly we must not have −I⊗n in our subgroup, since that represents
knowledge that 0(m) = 1. This requirement ensures that the represented
knowledge is consistent, but we must also respect the knowledge balance
principle.

Our notation suggests an natural function m from Gn to the Pauli group
Pn. For example m(ZIZ) = ZIZ, m(−XY) = −XY etc. For g in Gn

we can define a check vector using m, as r(g) = r(m(g)). If g represents
knowledge about the canonical variable F then r(g) is exactly F written as
a vector (a1, . . . , an, b1, . . . , bn).

Recall from §1.1.1 that two elements of the Pauli group g and h commute
if their check vectors r(g) and r(h) satisfy r(g)TJnr(h) = 0. Comparing this
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Picture from
[36]

Old New Pseudo-stabilizer

1 ∨ 3 Q = 0 〈X 〉

2 ∨ 4 Q = 1 〈−X〉

1 ∨ 2 P = 0 〈Z〉

3 ∨ 4 P = 1 〈−Z〉

1 ∨ 4 Q+ P = 0 〈Y〉

2 ∨ 3 Q+ P = 1 〈−Y〉

1 ∨ 2 ∨ 3 ∨ 4 No knowledge 〈〉

Table 4.2: The allowed epistemic states for an elementary system in three
notations. The pictures in the first column show the allowed
ontic states in blue. In the third column F = a is shorthand for
“knowledge that the ontic state m satisfies F (m) = a”.

with (4.1) we see that two elements of g and h of Gn are jointly-knowable if
and only if m(g) and m(h) commute. Indeed it is shown in Appendix A.2
that the lists of independent generators for valid states are the same for Gn
as Pn.

All the epistemic states for an elementary system are shown in Table 4.2.
Recall that 〈X 〉 means the subgroup generated by X , namely {I,X}, and
we use the convention that 〈〉 = {I}. A few of the epistemic states for
composite systems are shown in Table 4.3.

The pseudo-stabilizer notation allows the direct translation of some proofs
about qubit stabilizers into proofs about the toy theory. One simply verifies
the properties of the Pauli group Pn used in the proof also apply to Gn. For
example, the proof in §1.1.2 that a stabilizer subgroup of size 2n corresponds
to a pure state also applies in the pseudo-stabilizer case. Furthermore, the
proof in [1, Proposition 1] that there are

2n
n−1∏
k=0

(2n−k + 1) (4.7)

pure states on n qubits also applies to the pure states of n elementary
systems in the toy theory.
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Picture
from [36]

Old New Pseudo-stabilizer

(1 · 3)∨ (1 · 4)∨
(2 · 3) ∨ (2 · 4)

P1 = 0, P2 = 1 〈Z1,−Z2〉

(1 · 1)∨ (2 · 2)∨
(3 · 3) ∨ (4 · 4)

Q1 +Q2 = 0,
P1 + P2 = 0

〈Z1Z2,X1X2〉

(1 · 2)∨ (2 · 3)∨
(3 · 4) ∨ (4 · 1)

P1 +Q2 +P2 = 1,
Q1 +Q2 = 1

〈−Z1Y2,−X1X2〉

(3 ∨ 4) · (1 ∨
2 ∨ 3 ∨ 4)

P1 = 1 〈−Z1〉

[(1∨3)·(2∨4)]∨
[(2∨4) · (1∨3)]

Q1 +Q2 = 1 〈−X1X2〉

(1 ∨ 2 ∨ 3 ∨ 4) ·
(1 ∨ 2 ∨ 3 ∨ 4)

No knowledge 〈〉

(1 ·1 ·1)∨ (1 ·2 ·
2) ∨ (2 · 1 · 2) ∨
(2 ·2 ·1)∨ (3 ·3 ·
3)∨(3·4·4)∨(4·
3 · 4)∨ (4 · 4 · 3)

Q1+Q2+Q3 = 0,
P1 + P2 = 0,
P2 + P3 = 0

〈X1X2X3,Z1Z1,Z2Z3〉

Table 4.3: Some epistemic states for composite systems. They are each com-
posed of two elementary systems, except for the last which is com-
posed of three. Refer to equations 52 and 124 in [36] to interpret
the pictures.
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4.2 Transformations

Only reversible transformations are considered here. In the old definition
transformations are permutations of the ontic states which take any allowed
epistemic state to an allowed epistemic state. In the case of transformations
on an elementary system this is simply all 4! = 24 possible permutations of
the four ontic states, but for composite systems some permutations are not
allowed as they result in states that violate the knowledge balance principle.

The new definition formalises this by defining transformations as “the
group of symplectic affine transformations”. The transformations of an n-
system ontic state m in Ωn are those that can be written m→ Sm+ a for
some a in Ωn and (necessarily invertible) 2n× 2n matrix S satisfying

STJnS = Jn, (4.8)

where as usual addition modulo 2 is implied. Such S are known as a sym-
plectic matrices. Note that in the qubit stabilizer case, Clifford group gates
can also be associated with symplectic matrices [12].

Suppose that before the transformation we have knowledge that F (m) = b

for some canonical variable F in Ω∗n, and bit b. Considering F as a vector
we can write this as F Tm = b. After the transformation m→ Sm+ a this
becomes the knowledge F T (S−1(m − a)) = b, which can be re-arranged to
F̃ Tm = b+ F̃ Ta where F̃ = S−1TF . Suppose before the transformation the
we have knowledge of F and G which therefore must satisfy {F,G} = 0.
After the transformation we have knowledge of F̃ and G̃, and

{F̃ , G̃} = {S−1TF, S−1TG} = F TS−1JnS
−1TG = F TJnG = {F,G} (4.9)

where we have inverted both sides of STJnS = Jn and used J−1
n = Jn to find

that S−1JnS
−1T = Jn. In short, the condition (4.8) ensures that any valid

knowledge before the transformation is still valid knowledge afterwards.
We can update a pseudo-stabilizer g by changing the letters (the gk in

(4.6)) such that the check vector r(g) becomes S−1T r(g) and flipping the
sign if r(g)TS−1a = 1. It is easy to check that this is a group homomorphism
that maps −In to −In, and so much like the qubit stabilizer case we can
specify it by its action on the remaining generators Xk and Zk.
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For an elementary system the valid matrices S are

S1 =

1 0

0 1

 , S2 =

0 1

1 0

 , S3 =

1 1

1 0

 , (4.10)

S4 =

1 1

0 1

 , S5 =

0 1

1 1

 , S6 =

1 0

1 1

 . (4.11)

These 6 options for S combine with the four options for a ∈ Ω1 to give 24
transformations. These are exactly the 4! permutations of the ontic states,
as shown in Table 4.4. Two of the transformations for a pair of elementary
systems are shown in Table 4.5.

4.3 Measurements

In the old definition maximally informative measurements are specified by
a partitioning of the ontic state space into pure epistemic states. The mea-
surement outcome is determined solely by which part of the partition the
ontic state was in. For example, a measurement can be carried out to de-
termine whether the ontic state was (a) 1 or 2 or whether it was (b) 3 or
4. After the measurement the new epistemic state is the relevant part of
the partition, for example 1 ∨ 2, a random disturbance of the ontic state
ensuring that no further knowledge is available. There are also less informa-
tive measurements that partition the ontic state space into mixed epistemic
states. The new epistemic state in this case is not uniquely defined by the
knowledge balance principle, but a natural choice is the one with the high-
est possible classical fidelity with the previous ontic state (see [36]). I only
consider that choice here.

In the new definition measurements consist of the determination of a
jointly-knowable set of canonical variables. The highest classical fidelity
update rule becomes the assumption that the values of any further jointly-
knowable canonical variables are undisturbed by the measurement. In other
words we assume that the disturbance on measurement is minimal subject
to the knowledge balance principle.

The update rule considered here has the useful property that a maxi-
mally informative measurement, which seeks the value of n jointly-knowable
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Old New Pseudo-stabilizer

(1)(2)(3)(4) S = S1, a = (0, 0) X → X , Z → Z
(1)(2)(43) S = S4, a = (0, 0) X → Y, Z → Z
(1)(32)(4) S = S2, a = (0, 0) X → Z, Z → X
(1)(342) S = S5, a = (0, 0) X → Y, Z → X
(1)(432) S = S3, a = (0, 0) X → Z, Z → Y

(1)(42)(3) S = S6, a = (0, 0) X → X , Z → Y
(21)(3)(4) S = S4, a = (1, 0) X → −Y, Z → Z
(21)(43) S = S1, a = (1, 0) X → −X , Z → Z
(231)(4) S = S3, a = (1, 0) X → Z, Z → −Y
(2341) S = S6, a = (1, 0) X → −X , Z → −Y
(2431) S = S2, a = (1, 0) X → Z, Z → −X

(241)(3) S = S5, a = (1, 0) X → −Y, Z → −X
(321)(4) S = S5, a = (0, 1) X → −Y, Z → X
(3421) S = S2, a = (0, 1) X → −Z, Z → X

(31)(2)(4) S = S6, a = (0, 1) X → X , Z → −Y
(341)(2) S = S3, a = (0, 1) X → −Z, Z → −Y
(31)(42) S = S1, a = (0, 1) X → X , Z → −Z
(3241) S = S4, a = (0, 1) X → −Y, Z → −Z
(4321) S = S6, a = (1, 1) X → −X , Z → Y

(421)(3) S = S3, a = (1, 1) X → −Z, Z → Y
(431)(2) S = S5, a = (1, 1) X → Y, Z → −X

(41)(2)(3) S = S2, a = (1, 1) X → −Z, Z → −X
(4231) S = S4, a = (1, 1) X → Y, Z → −Z

(41)(32) S = S1, a = (1, 1) X → −X , Z → −Z

Table 4.4: The reversible transformations for an elementary system in three
notations. The first shows the permutations to the ontic states
in cycle notation (defined in [36]). The second shows the matrix
S and state a. The third shows the action on the non-trivial
generators of G1.
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Old New Pseudo-stabilizer

S =


1 0 1 0
0 1 0 0
0 0 1 0
0 1 0 1

,

a = (1, 0, 0, 1)

X1 → −Y1, X2 → X2,
Z1 → Z1, Z2 → −Y2

S =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

,

a = (0, 0, 0, 0)

X1 → X1X2, X2 → X2,
Z1 → Z1, Z2 → Z1Z2

Table 4.5: Two reversible transformations for pairs of elementary systems
in three notations. The first shows the permutations to the ontic
states (see [36], from which the images are taken). The second
shows the matrix S and state a. The third shows the action
on the non-trivial generators of G2. The first transformation is
separable: in the basis where the states are written (q1, p1, q2, p2),
S is block-diagonal. The second transformation is analogous to
a controlled-NOT (compare with the qubit case in [12]).
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variables and therefore has 2n outcomes, can be considered as a series of
measurements with two outcomes. For example a measurement of Q1 +Q2

and P1 + P2 simultaneously (analogous to a Bell basis measurement) is the
same a measurement of Q1 +Q2 and then a measurement of P1 + P2 since
we have assumed that the former will not disturb the value of the latter.

Measurements in the pseudo-stabilizer notation can therefore by consid-
ered as a one or more “Pauli measurements” (i.e. measurements of a single
canonical variable) which follow exactly the same procedure as measure-
ments in the qubit stabilizer formalism.

4.4 Computation in the toy theory

As observed in [36] the toy theory can be efficiently simulated on a classical
computer simply by sampling from the set of ontic states compatible with a
prepared epistemic states and then applying the transformations and mea-
surements to that ontic state. The epistemic state can also be computed
efficiently by tracking the pseudo-stabilizers. We can still ask if the theory
even permits universal classical computation. As reviewed in Chapter 3, in
the case of qubit stabilizers the computational power depends on whether a
circuit or measurement-based model is used, and so we consider each case
separately here.

4.4.1 Circuit computation

Consider preparing a set of elementary systems in Z and/or −Z states,
applying some sequence of allowed transformations and then doing a Z
measurement on each system. This can be considered a computational
circuit in the toy theory. From §4.2 it is clear that for a fixed circuit we can
efficiently simulate the computation by application of matrices and addition
of vectors modulo 2. On the other hand a circuit of NOT and controlled-
NOT gates can be simulated with a toy theory circuit using a gate that
sends Z → −Z for NOTs and a gate that sends Z1 → Z1, Z2 → Z1Z2

for controlled-NOTs. Therefore circuit computation in the toy theory is
equivalent to a “parity computer”, or more formally is complete for the
complexity class ⊕L (for the definition see [1] where the same statement is
proven for qubit stabilizer circuits).
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4.4.2 Measurement-based computation

In §3.2 we say that a parity computer can do full classical computation
if it is able to perform Pauli measurements on certain stabilizer states.
Can measurements of some state in the toy theory similarly promote parity
computations to universal classical computation?

The toy theory, by construction, has an LHV model (the ontic states).
Therefore the result of [30] would suggest that the answer to the above
question is no. However, that result assumes there are only two choices of
measurement, whereas in the toy model we have a choice of three measure-
ment (four including the trivial I measurement).

Suppose the measurement choice is made at each site by using two bits
(i1, i2), say with (0, 0) corresponding to I, (1, 0) to X , (0, 1) to Z and
(1, 1) to Y. Then for each of the four ontic states (p, q) the measurement
outcome bit is a linear function pi1 + qi2 of the input bits. Since linear
functions of linear functions are linear, the overall function computed by
such measurements controlled by a parity computer is also linear (this is
the same argument used in [30]). It is easy to check that any one-to-one
correspondence between two bits is automatically a linear function. There-
fore this argument will still apply if the correspondence between input bits
and measurements is made in a different way.
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5 LHV models for quantum

circuits

In the case of qubit stabilizers, we saw that the measurement-based model
was more powerful than the circuit model, and that the power of the
measurement-based model required quantum non-locality. Do qubit sta-
bilizers in the circuit model also involve quantum non-locality? The direct
answer to this question is yes, since using only Clifford group gates we can
prepare the GHZ state (2.1) then implement effective X measurements (of
the first type discussed in §1.4) of each qubit using the circuit

|0〉 H • • H NM





|0〉 �������� H NM





|0〉 �������� H NM





(5.1)

and similarly we can implement effective −Y1, −Y2 and X3 measurements
with

|0〉 H • • S H NM





|0〉 �������� S H NM





|0〉 �������� H NM





(5.2)

An effective −Y1 measurement can be turned into an effective Y1 measure-
ment by multiplying the result by −1. Similar circuits can be devised for
Y1, X2, Y3 and X1, Y2, Y3. It was shown in §2.2 that quantum non-locality
is involved in these measurements.

Perhaps the more interesting question is this: do Clifford group circuits
need to involve quantum non-locality? The demonstration of non-locality
given above requires circuits four circuits to be considered together. Let us
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instead only consider one circuit at a time. We could combine the above
four circuits into the following single circuit

|a〉 • NM





|b〉 • NM





|c〉 • NM





|0〉 H • • S H NM





|0〉 �������� S H NM





|0〉 �������� S H NM





(5.3)

where a, b and c are 0 or 1 representing the choice between X and Y

measurements respectively, and

•

S

(5.4)

is a controlled-S transformation that does nothing if the first qubit is in the
state |0〉 and applies an S transformation if the first qubit is in the state |1〉.
This circuit alone involves non-locality by the arguments above. However,
unlike the four circuits we started with, it is not a circuit of Clifford group
gates, since controlled-S transformations are not in the Clifford group (this
is shown in §A.1.2).

Hence the possibility remains that any particular circuit of Clifford group
gates admits an LHV model, and indeed this will be proven below. I begin
by defining exactly what I mean by an LHV model for a quantum circuit.

5.1 Definition

Consider a quantum circuit C consisting of unitary gates on n qubits. We
only consider the case where the input to the circuit is in the computational
basis, and the output is measured in the computational basis.

A local hidden variable model for that circuit C is a specification of the
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following.

1. For each qubit i, a set of local “hidden variable” states Si.

2. For each qubit i and b ∈ {0, 1}, a probability distribution over Si which
representations preparation of |b〉 on that qubit. Here locality means
that the distribution does not depend on what states are prepared on
the other qubits.

3. For each gate U in the circuit, taken to act on qubits i1, . . . , ik, and
each local state input (λi1 , . . . , λik), a probability distribution over
output local states which represents the change to the local state due
to the gate. Here locality means that the distribution does not depend
on the qubits not acted on by the gate, and furthermore that the local
state of such qubits is not affected by the gate.

4. For each qubit i, a joint probability distribution p(λi, b) on Si and
{0, 1} which gives the probability of obtaining outcome b when the
qubit is measured in the computational basis at the end of the circuit
and its local state is λi. Here locality means that the measurement
outcome depends on nothing but the local state of the qubit being
measured.

We require that the model reproduces the quantum mechanical predictions
for the joint probabilities of the measurement outcomes for every input state
in {|0〉 , |1〉}⊗n.

Since every aspect of the model is allowed to depend on the circuit C, it
may be a very poor candidate for the description of physical reality. It does
however show that no Bell inequality (see Chapter 2) can be violated by the
circuit. Conversely, any single circuit that demonstrates the violation of a
Bell inequality, for example (5.3), does not admit an LHV model.

5.2 “Almost classical” circuits

As a warm-up to circuits of Clifford gates consider the following simple
example of circuits that admit LHV models.

Let C consist of a round of single qubit gates U (1), U (2), . . . U (n) applied
to qubits 1, . . . , n, followed by a series of gates that are each either diagonal
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matrices or permutation matrices in the computational basis (this includes,
for example the X, Z, S, controlled-NOT and Toffili gates, but not the
Hadamard gate H). In [13] such circuits were related to probabilistic clas-
sical computation, and in particular it was shown that such circuits can be
efficiently simulated classically. The algorithm for doing so can easily be
converted into an LHV model for the circuits.

The model is as follows. The local state for each qubit is a classical bit,
Si = {0, 1}. Preparation of |0〉 (resp. |1〉) sets the bit to 0 (resp. 1). If
the input bit to one of the single qubit gates U is x then the output bit is
y with probability |Uyx|2. The diagonal gates have no effect in the model.
The action of the permutation gates is found by treating the input to each
gate as a binary number and applying the permutation to give the output
bits as a binary number. Measurement consists of reading out the bit.

This model is easily seen to give the same probabilities as quantum
mechanics. Let f : {0, 1}n → {0, 1}n be the one-to-one function com-
puted by the permutation gates. Suppose the input to the circuit was
|b1〉 ⊗ · · · ⊗ |bn〉, denoted |b1, . . . , bn〉. Then the measurement results will be
given by f(r1, . . . , rn) where (r1, . . . , rn) is selected randomly with proba-

bility
∣∣∣U (1)

r1b1

∣∣∣2 · · · ∣∣∣U (n)
rnbn

∣∣∣2.
Meanwhile the quantum state after the single qubit round would be∑

(r1,...,rn)∈{0,1}n
U

(1)
r1b1
· · ·U (n)

rnbn
|r1, . . . , rn〉 (5.5)

and after the remaining gates it would be∑
(r1,...,rn)∈{0,1}n

eiθr1,...,rnU
(1)
r1b1
· · ·U (n)

rnbn
|f(r1, . . . , rn)〉 , (5.6)

where the eiθr1,...,rm are phase factors due to the diagonal gates. When
measured in the computational basis this gives the same probabilities as the
LHV model.

This construction is easily generalized to circuits where the first rounds
consists of larger gates, for example U (12) applied to qubits 1 and 2, U (34)

applied to qubits 3 and 4 etc. One could go as far as an n-qubit unitary
applied across the entire input, but note that the locality conditions are
somewhat trivial in that case.
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5.3 Clifford circuits

Consider a circuit C consisting only of gates in the Clifford group defined
in §1.2. Then we will show that C admits an LHV model. We will further
show that the LHV model can be viewed as a classical circuit with only
NOT and controlled-NOT gates along with additional input bits selected
uniformly at random. This perhaps gives some insight into the result of [1]
(that simulation of Clifford circuits is ⊕L-complete) but does not imply it
since I make no claims about the computational complexity of finding the
LHV model for a given circuit.

We can form a new circuit C ′ where all the gates in C have been in-
dividually decomposed into H, S and (not necessarily nearest-neighbour)
controlled-NOT gates. It is easy to see that an LHV model for C ′ gives rise
to an LHV model for C, in other words decomposing the gates can only
make the locality requirements stronger. We therefore assume that C has
already been decomposed into this form.

I begin by discussing a model that doesn’t quite work, and will then
show how it can be fixed for every circuit. This LHV model for C is just
Spekken’s toy theory. The local state of each qubit is an elementary system
of the theory, so Si = Ω1 = (Z2)2. Preparation consists of preparing the
ontic state Z for |0〉 and −Z for |1〉. H gates apply the transformation
X → Z, Z → X . S gates apply X → Y, Z → Z. A controlled-NOT
gate with control 1 and target 2 applies X1 → X1X2, X2 → X2, Z1 → Z1,
Z2 → Z1Z2. The first two transformations can be found in Table 4.4, the
final one in Table 4.5. Measurement is simply a Z measurement.

We can compare (m applied to) the pseudo-stabilizer generators for this
model to the stabilizer generators for the qubit circuit. After the preparation
stage we can take them be identical: ±Z1 and ±Z1 (where the sign depends
on the input to the first qubit), ±Z2 and ±Z2 etc. Gates have the same
effect, up to a possible minus sign. For example, recall from (1.5) that H
sends the qubit stabilizer Y → −Y . However, in the LHV model it sends
Y = XZ → ZX = Y. After all the gates have been applied the pseudo-
stabilizer generators will therefore be identical up to signs. Let S denote
the pseudo-stabilizer subgroup, and S the qubit stabilizer subgroup, at that
point.

Recall that m : Gn → Pn was defined in §4.1 as the natural function
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with m(X ) = X etc. Define the “computational subgroup” of Gn as
〈−I⊗n,Z1, . . . ,Zk〉, for example the two-qubit computational subgroup is
{±I⊗2,±Z1,±Z2,±Z1Z2}. Similarly, define the “computational subgroup”
of Pn as 〈−I⊗n, Z1, . . . , Zk〉. We see that these subgroups play very nicely
with m:

• g is in the computational subgroup of Gn if and only if m(g) is in
the computational subgroup of Pn, indeed m gives a one-to-one cor-
respondence between the computational subgroups; and

• If g and h are both in the computational subgroup of Gn then m(gh) =
m(g)m(h) (this isn’t always true for more general g and h).

In Appendix A.3 I show that it is sufficient for an LHV model to have the
correct expectation values for all observables in the computational subgroup.
Both quantum mechanics and the toy theory predict an expectation values
of 1 for observables in the state subgroup, −1 for observables whose minus
is in the subgroup, and 0 for all other observables. Therefore it suffices
that applying m to the computational subgroup elements of S gives the
computational subgroup elements of S. By the argument above this will
certainly be true up to signs.

If the signs are incorrect then the model can always be fixed by flipping
some of the preparation procedures, i.e. so that preparing |0〉 prepares
−Z and |1〉 prepares Z for some of the qubits. This flips the signs of the
generators and therefore of the computational subgroup. There is always a
combination of flips that will make the signs in the computational subgroup
of the pseudo-stabilizers match the signs in the computational subgroup of
the qubit stabilizers. By the bullet points above it is enough to check a list
of generators for each.

The necessary flips can be found inductively. Write the independent gen-
erators of S as g1, g2, . . . . We will define a list of independent generators
for the computational subgroup elements of S as c1, c2, . . . . Start with an
empty list of generators.

Assume we have considered all the generators up to gk and written an
independent list of computational subgroup generators up to cl with the
correct signs. If gk+1 is computational we set cl+1 = gk+1 and flip the
sign of gk+1 if necessary to ensure that m(cl+1) is in S. Note that cl+1 is
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independent of c1, . . . , cl since gk+1 is independent of g1, . . . , gk and c1, . . . , cl
are in 〈g1, . . . , gk〉. If gk+1 is not in the computational subgroup then we
check if there is a h in 〈g1, . . . , gk〉 with gk+1h computational. In that case
we set cl+1 = gk+1h, which is independent of g1, . . . , gk and therefore of
c1, . . . , cl. Again we flip the sign of gk+1 if necessary to ensure that m(cl+1)
is in S. (If there is another element h′ in 〈g1, . . . , gk〉 that also has gk+1h

′

computational, this doesn’t matter since gk+1h
′ is in 〈c1, . . . , cl+1〉 because

gk+1hgk+1h
′ = hh′ which is in 〈c1, . . . , cl〉.) If there is no such h then we

ignore gk+1.
Once the correct sign flips have been found for the |0〉⊗n input, it will

work for any input. This is because changing the sign of one of the input
generators (e.g. Zk → −Zk) has the same effect on the output genera-
tors (e.g. fC(Zk) → fC(−Zk) = −fC(Zk) where fC is the transformation
implemented by the entire circuit) for both qubit stabilizers and the LHV
model.

The LHV model can be thought of as a classical circuit as follows. Each
qubit corresponds to two classical bits (representing q and p). Preparation
sets the value of the second bit to 0 for |0〉 and 1 for |1〉. This is imme-
diately followed by a NOT gate if it was necessary to flip the sign of the
corresponding generator when constructing the model. The first bit is set
uniformly at random.
H gates swap the two bits, which can be done using three consecu-

tive controlled-NOT gates applied in alternating directions. S gates apply
a controlled-NOT controlled by the second bit onto the first. Quantum
controlled-NOT gates controlled by the first qubit become two classical
controlled-NOT gates:

q1 ��������
p1 •
q2 •
p2 ��������

(5.7)
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5.3.1 Example

Here is an example of the entire process for constructing the LHV model.
Consider the circuit

|a〉 H • S H NM





|b〉 �������� S H NM





(5.8)

where a and b are each 0 or 1.
First we examine what the quantum mechanical predictions for this cir-

cuit. The stabilizer generators at the input stage are (−1)aZ1 and (−1)bZ2.
Applying the transformations in the circuit we find

Z1 → X1 → X1X2 → Y1Y2 → Y1Y2, (5.9)

Z2 → Z2 → Z1Z2 → Z1Z2 → X1X2, (5.10)

and so just before the measurement the stabilizer subgroup S is generated by
(−1)aY1Y2 and (−1)bX1X2. Since Y1Y2X1X2 = −Z1Z2 the entire subgroup
is

S =
{
I⊗2, (−1)aY1Y2, (−1)bX1X2, (−1)1+a+bZ1Z2

}
. (5.11)

The only element in the computational subgroup is (−1)1+a+bZ1Z2. This
shows that each of the computational basis measurements at the end can
give either outcome with equal probability (since neither ±Z1 nor ±Z2 are
in S), but the two outcomes will be the same if a 6= b or opposite if a = b

(since multiplying the two outcomes is an effective measurement of Z1Z2).
Applying the corresponding transformations to the pseudo-stabilizers of

the LHV model we find

Z1 → X1 → X1X2 → Y1Y2 → Y1Y2, (5.12)

Z2 → Z2 → Z1Z2 → Z1Z2 → X1X2, (5.13)

and so just before the measurement the pseudo-stabilizer subgroup S is
generated by (−1)aY1Y2 and (−1)bX1X2. Since Y1Y2X1X2 = Z1Z2 the
entire subgroup is

S =
{
I⊗2, (−1)aY1Y2, (−1)bX1X2, (−1)a+bZ1Z2

}
. (5.14)
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As promised the subgroups are identical up to sign differences. We now
follow the inductive procedure to fix the signs. We have g1 = (−1)aY1Y2 and
g2 = (−1)bX1X2. g1 is not computational and there is no h in 〈〉 = {I⊗2}
with g1h computational so we ignore g1. g2 is not computational but there
is h = (−1)aY1Y2 in 〈g1〉 with g2h = (−1)a+bZ1Z2 computational. The sign
is wrong compared to the qubit stabilizer and so we introduce a flip to the
second qubit: preparing |0〉 will prepare −Z2 whilst |1〉 prepares Z2. We
now have c1 = (−1)a+(1+b)Z1Z2 and so the computational subgroups are
identical as required for the model to work.

Following the prescription above we can write the LHV model as a clas-
sical circuit

q1 × �������� �������� ×
a × • • × NM






q2 • �������� ×
b NOT �������� • × NM






(5.15)

where q1 and q2 are independently set uniformly at random,

×
×

(5.16)

represents the swapping of two bits and the meters simply output the clas-
sical bit that they receive. Note that the two qubit lines (each represented
by two classical bits) interact only at at the controlled-NOT gate. Since
classical circuits do not have any quantum non-locality this ensure that the
model is local. It can be checked directly that the output probabilities are
the same as the quantum mechanical predictions.
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6 Conclusions and outlook

The pseudo-stabilizer notation emphasizes the close similarities between
Spekkens’ toy theory and the qubit stabilizer formalism. Recent work [11]
has shown that the only GHZ-style correlations possible in theories of a
certain type are the toy theory and qubit ones. It would be interesting to
seek a set of axioms that are satisfied by both the toy theory and qubit
stabilizers. Hopefully a choice from two different additional axioms would
then give either the toy theory (for example from an axiom that the theory
must satisfy all Bell inequalities) or qubit stabilizers. Such axioms would
preferably be of a physical and/or operational flavour with the mathematical
structure (for example the correspondence between states and subgroups)
being derived from them.

The pseudo-stabilizer notation may also make it easier to consider exten-
sions of the toy theory. For example, here I followed [36] in only considering
reversible transformations, but there may be some irreversible transforma-
tions that can be added in a natural way. One could also consider more
dramatic changes, for example adding explicitly non-local interactions dur-
ing measurement in order to violate Bell inequalities.

We have seen that the computational power of qubit stabilizers and the
toy theory in a circuit model is equal, whilst in a measurement-based model
the former is more powerful. This difference has been shown to coincide
with a difference in locality: qubit stabilizer circuits admit LHV models
whereas freely chosen Pauli measurements on certain stabilizer states do
not. In contrast the toy theory is always, by construction, local.

An interesting class of quantum circuits that can be efficiently classically
simulated are circuits of “nearest neighbour matchgates” [21]. I have not
yet been able to determine whether all such circuits admit an LHV model
in the sense considered here. If they do, this would provide further evidence
of a link between non-locality and computational speed-up.

If quantum non-locality makes quantum mechanics more computation-
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ally powerful than local theories, would theories with “more” non-locality
than quantum mechanics be even more powerful? Such theories predict
correlations that, whilst still not permitting signalling, violate the quantum
Tsirelson’s bound [10]. A striking example of such correlations is the PR or
non-local box [29]. One such theory is the “Generalized Non-Signalling The-
ory” of [3]. The computational power of such theories may depend on the
computational model, for example a circuit model versus a measurement-
based model.

Quantum non-locality is arguably the most remarkable feature of quan-
tum mechanics, and quantum computation is perhaps its most exciting ap-
plication. This report provides a small contribution to the evidence that
they are two sides of the same coin.

45



A Appendices

A.1 Linking the stabilizer formalism to the

Hilbert space formalism

A.1.1 States

The stabilizer state ρS was defined as the state for which the expectation
values of observables in S is 1, whilst the expectation value of other ob-
servables is 0. In the Hilbert space formalism a state is given by a trace
one positive operator known as the density operator [28, Section 2.4]. The
density operator ρS is given by

ρS =
1
2n
∑
g∈S

g. (A.1)

Proof. Let A and B be two observables in Pn. Then it is easy to check that

• If A = B then tr(AB) = tr(I⊗n) = 2n,

• If A = −B then tr(AB) = tr(−I⊗n) = −2n,

• Otherwise tr(AB) = 0.

Then for any observable A in Pn we can use the linearity of the trace to see
that the expectation value for A

tr(AρS) =
1
2n
∑
g∈S

tr(Ag) =


1 if A ∈ S

−1 if −A ∈ S

0 otherwise

. (A.2)

We also need to check that ρS is a valid density operator. We have
already checked that it has trace 1, since I⊗n ∈ S (the identity is in any
subgroup) and so we have that the expectation value tr(I⊗nρS) = tr(ρS)
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Density operator ρS Bloch vector Stabilizer S

|+〉 〈+| where |+〉 = 1√
2
(|0〉+ |1〉) (1, 0, 0) 〈X〉

|−〉 〈−| where |−〉 = 1√
2
(|0〉 − |1〉) (−1, 0, 0) 〈−X〉

|0〉 〈0| (0, 0, 1) 〈Z〉
|1〉 〈1| (0, 0,−1) 〈−Z〉

|i〉 〈i| where |i〉 = 1√
2
(|0〉+ i |1〉) (0, 1, 0) 〈Y 〉

|−i〉 〈−i| where |−i〉 = 1√
2
(|0〉 − i |1〉) (0,−1, 0) 〈−Y 〉

1
2I (the maximally mixed state) (0, 0, 0) 〈〉

Table A.1: The stabilizer states for a single qubit. The Bloch vector (x, y, z)
is such that ρS = I+xX+yY+zZ

2 , see [28, Exercise 2.72].

Density operator ρS Stabilizer S

|01〉 〈01| 〈Z1,−Z2〉
|Φ+〉 〈Φ+| where |Φ+〉 = 1√

2
(|00〉+ |11〉) 〈Z1Z2, X1X2〉

|ψ〉 〈ψ| where |ψ〉 = 1
2(|00〉 − i |01〉+ i |10〉 − |11〉) 〈−Z1Y2,−X1X2〉

(|1〉 〈1|)⊗ 1
2I = 1

2(|10〉 〈10|+ |11〉 〈11|) 〈−Z1〉
1
2(|+−〉 〈+−|+ |−+〉 〈−+|) 〈−X1X2〉

1
4I
⊗2 (maximally mixed state) 〈〉

|GHZ〉 〈GHZ| where |GHZ〉 = 1√
2
(|000〉+ |111〉) 〈X1X2X3, Z1Z2, Z2Z3〉

Table A.2: Some stabilizer states for composite systems. They are each
composed of two qubits, except for the last which is composed
of three. |01〉 is shorthand for |0〉 ⊗ |1〉, |+−〉 for |+〉 ⊗ |−〉 etc.

of this (trivial) observable is 1. We also need that ρS is positive. Since
it is certainly Hermitian we need only check that its eigenvalues are non-
negative. In [9, Section 2] it is shown that 2n

|S|ρS (where |S| is the number of
elements of S) is a projector, and since the eigenvalues of a projector are all
0 or 1 we have that the eigenvalues of ρS are all 0 or |S|2n . This observation
also gives the rank of ρS as 2n

|S| , in particular ρS is rank one (i.e. a pure
state) if and only if |S| = 2n. (Hence the definition in §1.1.2 corresponds
exactly to the standard Hilbert space definition.)
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A.1.2 Transformations

In the Hilbert space formalism a reversible transformation is represented
by a unitary matrix U that sends the density operator ρ to UρU †. The
Clifford group on n qubits is the set of unitary matrices U with UgU † in
Pn for all g in Pn. The function fU on Pn is then given by fU (g) = UgU †.
The homogeneity and group homomorphism properties of fU follow directly
from the definition. By inspection of (A.1) we see that UρSU † = ρfU (S).

The unitary matrices for the Hadamard, phase and controlled-NOT trans-
formations are

H =
1√
2

1 1

1 −1

 , S =

1 0

0 i

 and CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (A.3)

respectively. We can then check directly that fH(X) = HXH† = Z and
so on. That these three transformations generate the entire Clifford group
(ignoring irrelevant global phases) is proven in, for example, [9, Section 7].

Finally, we note that the controlled-S gate

CS =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

 (A.4)

is not in the Clifford group, since for example CSX1CS
† = 1

2(X1 +X1Z2 +
Y1 + Y1Z2) which is not in the Pauli group.

A.1.3 Measurements

In the Hilbert space formalism an observable is represented by a Hermi-
tian matrix O, and the state after measurement is found using projection
operators. In our case the eigenvalues of O are ±1 and so we can write
O = O+ − O− where O± are projection operators onto the ±1 eigenspaces
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of O. For Pauli observables O± = I⊗n±O
2 , and so the new state is given by

O±ρSO±
1
2

= 2
∑
g∈S

O±gO±. (A.5)

Note that for any g ∈ Pn

2O±gO± =
g ± gO ±Og +OgO

2
=

g ±Og if g,O commute

0 if g,O anticommute
.

(A.6)
Hence the stabilizer subgroup S is updated according the rules given in §1.3.

A.2 Stabilizer generators versus pseudo-stabilizer

generators

Let {g1, g2, . . . , gl} be a subset of Gn. Then the following are equivalent:

1. {g1, g2, . . . , gl} are indepedent generators of a jointly-knowable sub-
group of Gn that does not contain −In.

2. {m(g1),m(g2), . . . ,m(gl)} are independent generators of a subgroup
of Pn that does not contain −I.

“Independent generators” means the list of generators is minimal, i.e.
none of them can be written as a product of the rest.

Proof. The second statement is equivalent to “m(g1),m(g2), . . . ,m(gl) com-
mute, have linearly independent check vectors, and each square to I⊗n” [9,
Equation 54]. As already noted, the check vectors for g and m(g) are the
same and commuting in Pn is equivalent to being jointly-knowable in Gn.
Furthermore m(g)2 = I⊗n since the only elements of Pn that don’t square
to I⊗n are those with phases α = i or −i, which aren’t in the range of m.

Hence the second statement is equivalent to “g1, g2, . . . , gl are jointly-
knowable and have linearly independent check vectors”. We have that if
a, b, c ∈ Gn are jointly knowable then so are ab and c. Therefore g1, g2, . . . , gl
are jointly-knowable if and only if 〈g1, g2, . . . , gl〉 are jointly knowable.

Suppose 〈g1, g2, . . . , gl〉 contains −I⊗n. Then the check vector of −I⊗n

can be written is a linear combination of the check vectors of g1, g2, . . . , gl.
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But the check vector of −I⊗n is 0 and so the check vectors of g1, g2, . . . , gl
are linearly dependent. Suppose that the first statement holds but the check
vectors of g1, g2, . . . , gl are linearly dependent. Then the check vector of one
of them, say of g1, can be written as a linear combination of the others.
That means that either g1 or −g1 can be written as a product of the others.
The first possibility contradicts the assumption of independent generators,
and since g1(−g1) = −I⊗n the second contradicts the assumption that the
subgroup does not contain −I⊗n.

A.3 Joint probabilities as expectation values of

products

Rather than examining the joint probability distribution of measurement
outcomes directly, it is sometimes easier to check that an LHV model pre-
dicts the correct expectation values for all the “products of Z operators”.
Here I show that this condition is sufficient (it is obviously necessary). For
all 1 ≤ k ≤ n let Ẑk be a measurement outcome 1 or −1. Then we clearly
have (

1 + Ẑk
2

)
=

1 Zk = 1

0 Zk = −1
. (A.7)

Hence for any probability distribution p on the Zk we have

p(Ẑ1 = 1, . . . , Ẑn = 1) =

〈
1 + Ẑ1

2
· · · 1 + Ẑn

2

〉

=
1 +

〈
Ẑ1

〉
+ · · ·+

〈
Ẑn

〉
+
〈
Ẑ1Ẑ2

〉
+ · · ·+

〈
Ẑ1 · · · Ẑn

〉
2n

. (A.8)

Similarly (
1− Ẑk

2

)
=

0 Zk = 1

1 Zk = −1
, (A.9)

and so, for example with n = 2

p(Ẑ1 = 1, Ẑ2 = −1) =

〈
1 + Ẑ1

2
1− Ẑ2

2

〉
=

1 +
〈
Ẑ1

〉
−
〈
Ẑ2

〉
−
〈
Ẑ1Ẑ2

〉
4

.

(A.10)
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